2,523 research outputs found

    Minority Game of price promotions in fast moving consumer goods markets

    Full text link
    A variation of the Minority Game has been applied to study the timing of promotional actions at retailers in the fast moving consumer goods market. The underlying hypotheses for this work are that price promotions are more effective when fewer than average competitors do a promotion, and that a promotion strategy can be based on past sales data. The first assumption has been checked by analysing 1467 promotional actions for three products on the Dutch market (ketchup, mayonnaise and curry sauce) over a 120-week period, both on an aggregated level and on retailer chain level. The second assumption was tested by analysing past sales data with the Minority Game. This revealed that high or low competitor promotional pressure for actual ketchup, mayonnaise, curry sauce and barbecue sauce markets is to some extent predictable up to a forecast of some 10 weeks. Whereas a random guess would be right 50% of the time, a single-agent game can predict the market with a success rate of 56% for a 6 to 9 week forecast. This number is the same for all four mentioned fast moving consumer markets. For a multi-agent game a larger variability in the success rate is obtained, but predictability can be as high as 65%. Contrary to expectation, the actual market does the opposite of what game theory would predict. This points at a systematic oscillation in the market. Even though this result is not fully understood, merely observing that this trend is present in the data could lead to exploitable trading benefits. As a check, random history strings were generated from which the statistical variation in the game prediction was studied. This shows that the odds are 1:1,000,000 that the observed pattern in the market is based on coincidence.Comment: 19 pages, 10 figures, accepted for publication in Physica

    Fitting a sum of exponentials to lattice correlation functions using a non-uniform prior

    Full text link
    Excited states are extracted from lattice correlation functions using a non-uniform prior on the model parameters. Models for both a single exponential and a sum of exponentials are considered, as well as an alternate model for the orthogonalization of the correlation functions. Results from an analysis of torelon and glueball operators indicate the Bayesian methodology compares well with the usual interpretation of effective mass tables produced by a variational procedure. Applications of the methodology are discussed.Comment: 12 pages, 8 figures, 8 tables, major revision, final versio

    Mesoscopic transport beyond linear response

    Full text link
    We present an approach to steady-state mesoscopic transport based on the maximum entropy principle formulation of nonequilibrium statistical mechanics. Our approach is not limited to the linear response regime. We show that this approach yields the quantization observed in the integer quantum Hall effect at large currents, which until now has been unexplained. We also predict new behaviors of non-local resistances at large currents in the presence of dirty contacts.Comment: 14 pages plus one figure (with an insert) (post-script codes appended), RevTeX 3.0, UCF-CM-93-004 (Revised

    Variable Hard-X-Ray Emission from the Candidate Accreting Black Hole in Dwarf Galaxy Henize 2-10

    Get PDF
    We present an analysis of the X-ray spectrum and long-term variability of the nearby dwarf starburst galaxy Henize 2–10. Recent observations suggest that this galaxy hosts an actively accreting black hole (BH) with mass ~106 M{{M}_{\odot }}. The presence of an active galactic nucleus (AGN) in a low-mass starburst galaxy marks a new environment for AGNs, with implications for the processes by which "seed" BHs may form in the early universe. In this paper, we analyze four epochs of X-ray observations of Henize 2–10, to characterize the long-term behavior of its hard nuclear emission. We analyze observations with Chandra from 2001 and XMM-Newton from 2004 and 2011, as well as an earlier, less sensitive observation with ASCA from 1997. Based on a detailed analysis of the source and background, we find that the hard (2–10 keV) flux of the putative AGN has decreased by approximately an order of magnitude between the 2001 Chandra observation and exposures with XMM-Newton in 2004 and 2011. The observed variability confirms that the emission is due to a single source. It is unlikely that the variable flux is due to a supernova or ultraluminous X-ray source, based on the observed long-term behavior of the X-ray and radio emission, while the observed X-ray variability is consistent with the behavior of well-studied AGNs

    Real-time deterministic power flow control through dispatch of distributed energy resources

    Get PDF
    Integration of intermittent renewable resources and mass electrification of heat and transport into the existing electricity network, with limited network asset reinforcement requires incorporation of intelligence in form of active management of flexible resources within different sections of the distribution network. A hierarchical multi-level control framework is proposed for this purpose which incorporates the appropriate optimisation and control strategies at different levels. In particular a novel deterministic control algorithm for controlling power flows at the community cell level has been developed and presented in this paper. This algorithm incorporates robustness to communication and device failure and is easily expandable to an arbitrary number of devices. The simulation results presented in this paper show that the effectiveness of the proposed control technique depends on distributed energy resources flexibility and storage capacity

    Low bandgap mid-infrared thermophotovoltaic arrays based on InAs

    Get PDF
    We demonstrate the first low bandgap thermophotovoltaic (TPV) arrays capable of operating with heat sources at temperatures as low as 345 °C, which is the lowest ever reported. The individual array elements are based on narrow band gap InAs/InAs0.61Sb0.13P0.26 photodiode structures. External power conversion efficiency was measured to be ∼3% from a single element at room temperature, using a black body at 950 °C. Both 25-element and 65-element arrays were fabricated and exhibited a TPV response at different source temperatures in the range 345–950 °C suitable for electricity generation from waste heat and other applications

    Long-distance dispersal of pigeons and doves generated new ecological opportunities for host-switching and adaptive radiation by their parasites.

    Get PDF
    Adaptive radiation is an important mechanism of organismal diversification and can be triggered by new ecological opportunities. Although poorly studied in this regard, parasites are an ideal group in which to study adaptive radiations because of their close associations with host species. Both experimental and comparative studies suggest that the ectoparasitic wing lice of pigeons and doves have adaptively radiated, leading to differences in body size and overall coloration. Here, we show that long-distance dispersal by dove hosts was central to parasite diversification because it provided new ecological opportunities for parasites to speciate after host-switching. We further show that among extant parasite lineages host-switching decreased over time, with cospeciation becoming the more dominant mode of parasite speciation. Taken together, our results suggest that host dispersal, followed by host-switching, provided novel ecological opportunities that facilitated adaptive radiation by parasites

    The effect of laser shock peening on hardness and microstructure in a welded marine steel

    Get PDF
    Residual stress is generally considered as the main criterion in laser shock peening for enhancement of fatigue life. However, changes in material hardness, microstructure and surface roughness can also affect component performance. These three aspects are investigated in this paper for welded marine steel samples subjected to laser peening. After laser peening an increase in hardness was seen across the weld and parent metal, with the local hardness dependent upon the initial hardness of the region before peening. The increase was relatively higher for the weld metal which had lower initial hardness. The local surface displacement profiles reflected the number of laser peening layers applied, and the peening also affected the distortion of the specimen after welding

    Ab Initio Evidence for the Formation of Impurity d(3z^2-r^2) Holes in Doped La_{2-x}Sr_xCuO_4

    Get PDF
    Using the spin unrestricted Becke-3-Lee-Yang-Parr density functional, we computed the electronic structure of explicitly doped La_{2-x}Sr_xCuO_4 (x = 0.125, 0.25, and 0.5). At each doping level, an impurity hole band is formed within the undoped insulating gap. This band is well-localized to CuO_6 octahedra adjacent to the Sr impurities. The nature of the impurity hole is A_{1g} in symmetry, formed primarily from the z^2 orbital on the Cu and p_z orbitals on the apical O's. There is a strong triplet coupling of this hole with the intrinsic B_{1g} Cu x^2-y^2/O1 p_{sigma} hole on the same site. Optimization of the c coordinate of the apical O's in the doped CuO_6 octahedron lead to an asymmetric anti-Jahn-Teller distortion of the O2 atoms toward the central Cu. In particular, the O2 atom between the Cu and Sr is displaced 0.26 A while the O2 atom between the Cu and La is displaced 0.10 A. Contrary to expectations, investigation of a 0.1 A enhanced Jahn-Teller distortion of this octahedron does not force formation of an x^2-y^2 hole, but instead leads to migration of the z^2 hole to the four other CuO_6 octahedra surrounding the Sr impurity. This latter observation offers a simple explanation for the bifurcation of the Sr-O2 distance revealed in x-ray absorption fine structure data.Comment: Submitted to Phys. Rev. B. See http://www.firstprinciples.com for more informatio

    Out of equilibrium: understanding cosmological evolution to lower-entropy states

    Get PDF
    Despite the importance of the Second Law of Thermodynamics, it is not absolute. Statistical mechanics implies that, given sufficient time, systems near equilibrium will spontaneously fluctuate into lower-entropy states, locally reversing the thermodynamic arrow of time. We study the time development of such fluctuations, especially the very large fluctuations relevant to cosmology. Under fairly general assumptions, the most likely history of a fluctuation out of equilibrium is simply the CPT conjugate of the most likely way a system relaxes back to equilibrium. We use this idea to elucidate the spacetime structure of various fluctuations in (stable and metastable) de Sitter space and thermal anti-de Sitter space.Comment: 27 pages, 11 figure
    corecore